

UPDATED 2/11/2014 CONVERSANT MEDIA

MOJO RICH MEDIA
BANNER AD DEVELOPMENT – CONVERSANT FLASH FRAMEWORK

2 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

TABLE OF CONTENTS

Introduction .. 3

The Conversant Flash Framework ... 5

Installing the Conversant Flash Framework .. 5

Creating Click Tags with the Mojo Class .. 8

Expandable Banner Ads .. 11

Producing Double-Asset Expandable Flash Creative ... 13

Producing Single-Asset Expandable Flash Creative ... 18

Banners with Video ... 22

Producing a Simple Video Banner Using the MojoVideo Class ... 22

Using Additional Features of the MojoVideo Class ... 25

Index of Buttons, Properties, Methods and Events of the MojoVideo Object 27

Tracking Video Metrics without Using the MojoVid Class .. 33

Tracking Events ... 36

Standard Events ... 36

Tracking Custom Events .. 37

Tracking Timed Events ... 38

Additional Specs and Best Practices ... 40

Collapse on Click .. 40

Loading External Content .. 41

Close Button .. 42

Border Outline ... 43

Collapse on MouseOut .. 44

Coding for full screen .. 44

Developer Checklist ... 45

Glossary ... 46

Additional Support .. 47

mailto:customersupport@CONVERSANTMEDIA.com

3 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

INTRODUCTION
The Conversant Flash Framework will streamline the process of building Rich Media Flash banners for

delivery through the Conversant Rich Media platform. Conversant maintains a number of Rich Media

templates to support Flash banners and the Framework integrates your Flash assets with the Conversant

templates. The Framework supports various 'Rich' features including expand/collapse, video, click tags,

dynamic URLs, and tracking user interactions.

This document contains step by step instructions and recommendations for building Rich Media Flash

ads with the Conversant Flash Framework. The following documentation includes instructions and

guidelines for:

 Installing and implementing the Conversant Flash Framework

 Accessing the Mojo Class

 Building expandable banners (single-asset and double-asset)

 Creating banners with video

 Tracking interaction metrics

 Best practices

Screenshots and code samples are included for all critical aspects of banner development to Conversant

specifications and integration with the Conversant Flash Framework. Code samples include ActionScript

2 and ActionScript 3 except for the Video modules which only support ActionScript 3.

NOTE

Individual publishers may issue additional specifications and limitations. Be sure to consider all

publisher/site specs before ad development begins.

A library of sample files is available as reference material for the examples contained in this document.

Each section contains a reference to the relevant sample file included in the Conversant Flash

Framework package.

Download the Conversant Flash Components and sample files from the following location:

http://www.mojorichmedia.com/download-framework

mailto:customersupport@CONVERSANTMEDIA.com

4 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

All code examples in the this document are illustrated in ActionScript 3 and ActionScript 2 – except the

Video elements are supported in ActionScript 3 only. Likewise, the sample files include examples in

ActionScript 3 and ActionScript 2, except for the video components which only include ActionScript 3.

BEST PRACTICE

We update the Conversant Flash Framework and specs from time to time. Prior to starting each new

project, please download and re-install the Conversant Components to ensure you are working from

the most current code and guidelines.

mailto:customersupport@CONVERSANTMEDIA.com

5 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

THE CONVERSANT FLASH FRAMEWORK

INSTALLING THE CONVERSANT FLASH FRAMEWORK

The Conversant Flash Framework is distributed as an MXP file and contains components for ActionScript

2 and ActionScript 3. Add the components to your existing Adobe Flash Professional installation by

following these steps:

1. Download the Conversant Flash Framework Package ZIP file and extract the contents.

http://www.mojorichmedia.com/download-framework

2. Double-click on the MojoActionscriptFramework.mxp file. This will launch the Adobe Extension

Manager which will install the Conversant Framework components into your Flash application files.

NOTE

If you don't have the Adobe Extension Manager installed on your machine you can download it here:

http://www.adobe.com/exchange/em_download.

3. If Flash is currently running on your machine, you will need to close the application and re-launch it

before the Framework components are available. Alternatively, you can select 'Reload Components'

from the Components panel menu.

4. In your Flash project file (.FLA), open the Components panel (Window > Components). You should

now see the Conversant folder available. Click the triangle to the left of the folder to expand the

module.

The Conversant

Components module

displayed in the Flash

Components panel

mailto:customersupport@CONVERSANTMEDIA.com
http://www.adobe.com/exchange/em_download

6 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

5. In your Flash project (.fla), select the first frame on the main timeline and either

A. Double-click the mojoFramework component to add it to your project, or

B. Open the Library panel (Window > Library) and drag the mojoFramework component from the

Components window into the Library window.

Either of these methods will install the mojoFramework into your Flash project.

NOTE

You will see either the mojoFramework_AS2 or mojoFramework_AS3 component displayed in the

Components pane depending on which version of ActionScript the .FLA is using. Both versions are

included in the Conversant Components module. Flash automatically displays the correct component

based on your ActionScript settings defined in the Flash tab of the Publish Settings dialog box.

6. With the framework now added to your project, you will need to create an instance of the Mojo

class.

A. Create an actions layer on the main timeline.

Dragging the

mojoFramework

component into the

Library.

mailto:customersupport@CONVERSANTMEDIA.com

7 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

B. Enter the following ActionScript on the first frame of your Actions layer:

AS3

AS2

7. Save your FLA file.

8. Now that you have created an instance of the Mojo class, you can call any of the methods of the

Mojo class referenced in this document.

import com.conversant.Mojo;

var cnvr:Mojo = new Mojo(root);

import com.conversant.Mojo;

var cnvr:Mojo = new Mojo(_root);

mailto:customersupport@CONVERSANTMEDIA.com

8 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

CREATING CLICK TAGS WITH THE MOJO CLASS

The Mojo class provides a number of pre-defined methods for performing the common functions

associated with rich media creative. These include handling click tags, passing a dynamic URL, and

expand/collapse functions. The Conversant Flash Framework has a separate class for Video which is

detailed in section IV – Creating Banners with Video.

Be sure to apply the Mojo class methods to the appropriate objects/events within your Flash banner.

CLICK TAGS FOR SINGLE CLICK-THRU CREATIVE

SAMPLE FILES

AS3 clicktag/cnvr_as3_clickTag_300x250.fla

AS2 clicktag/cnvr_as2_clickTag_300x250.fla

mojo_click()

This method will call the Conversant clickTAG which will redirect the user to the landing page as defined

for the creative in Conversant Adserver.

AS3

clickBtn.addEventListener(MouseEvent.CLICK, cnvr.mojo_click);

AS2

clickBtn.onRelease = function(){cnvr.mojo_click()};

CLICK TAGS FOR MULTIPLE CLICK-THRU CREATIVE

SAMPLE FILES

AS3 clicktag/cnvr_as3_multipleClickTags_300x250.fla

AS2 clicktag/cnvr_as2_multipleClickTags_300x250.fla

mojo_click(ckVal:int=null)

For creative with multiple click-thru destinations, an optional numeric parameter is used to designate

and track specific click-thru URLs via the Conversant Adserver. The value passed in this optional

argument will be used to construct an additional parameter which is passed on the click (i.e. – &ck=1,

&ck=2, &ck=3…). Conversant Adserver references this parameter against a series of rules configured in

mailto:customersupport@CONVERSANTMEDIA.com

9 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

the system in order to redirect to the corresponding landing page. Each unique click-thru URL must use a

unique ckVal value.

AS3

clickBtn.addEventListener(MouseEvent.CLICK, Click1);

function Click1(e:MouseEvent):void { cnvr.mojo_click(1)};

otherClickBtn.addEventListener(MouseEvent.CLICK, Click2);

function Click2(e:MouseEvent):void { cnvr.mojo_click(2)};

AS2

clickBtn.onRelease = function(){ cnvr.mojo_click(1)};

otherClickBtn.onRelease = function(){ cnvr.mojo_click(2)};

PASSING A DYNAMIC URL ON CLICK-THRU

mojo_click(ckVal:int=null, mpre:String=null)

The optional second argument of the mojo_click method is used to designate a specific click-thru URL

that will override the click-thru URL defined in Conversant Adserver. Adserver will still track the click but

the final destination page will be taken from the mpre argument of this method. The mpre parameter of

the mojo_click method should be used only in situations where the final destination URL cannot be pre-

defined. Otherwise the URL should be defined in Conversant Adserver.

For example, in the banner ad below, the zip code is entered by the user and appended to the base URL

which is passed into the mojo_click method. This argument can be used in conjunction with a ckVal

argument to track multiple click-thru URLs within a single banner (see above for discussion of Click Tags

for Multiple Click-thru Creative). When using the mpre parameter, the ckVal cannot be “null.” In the

sample below, the ckVal is set to 1.

mailto:customersupport@CONVERSANTMEDIA.com

10 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

AS3

yourButtonName.addEventListener(MouseEvent.CLICK, zipClick);

function zipClick(e:MouseEvent):void {

 var zipCode = zipField.text;

 cnvr.mojo_click(1, "http://www.fandango.com/theaters/" + zipCode)

};

AS2

yourButtonName.onRelease = function(){

 var zipCode = zipField.text;

 cnvr.mojo_click(1, "http://www.fandango.com/theaters/" + zipCode)

};

WARNING

Do NOT encode the destination URL. The mojo_click function will encode the final URL when it appends

it to the actual clickTAG.

Example of resulting

redirect URL:

http://www.fandango.c

om/theaters/94105

mailto:customersupport@CONVERSANTMEDIA.com

11 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

EXPANDABLE BANNER ADS
Expandable banner ads initially load on the page as standard sized banners. Upon a user-initiated action

(such as a mouseover or click) the ad will expand to show one or more panels with additional messaging.

Expandable banners are advantageous when the advertiser's message cannot be conveyed effectively

within the confines of a static banner and where the availability of additional messaging space has a

measurable impact on performance. Expandable ads can also be set to expand and collapse

automatically without user interaction.

There are two methods of the Conversant Flash Framework that control the expansion and collapse of

expandable banner ads; they are mojo_show and mojo_hide respectively. These methods are available

in single-asset as well as double-asset expandable banners.

mojo_show()

This method initiates an ad expansion. Associate this method with events like MouseEvent.CLICK or

MouseEvent.ROLL_OVER using the following construct:

AS3

expandBtn.addEventListener(MouseEvent.CLICK, cnvr.mojo_show);

AS2

expandBtn.onRelease = function(){ cnvr.mojo_show()};

mojo_hide()

This method initiates an ad collapse. Associate this method with events like MouseEvent.CLICK or

MouseEvent.ROLL_OUT using the following construct:

AS3

collapseBtn.addEventListener(MouseEvent.CLICK, cnvr.mojo_hide);

AS2

collapseBtn.onRelease = function(){ cnvr.mojo_hide()};

mailto:customersupport@CONVERSANTMEDIA.com

12 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

The Flash file(s) are uploaded into Conversant Adserver and plugged into the Conversant Rich Media

template which serves as the host HTML/JavaScript wrapper for the Flash file(s). This Conversant Rich

Media implementation team manages this process. The Conversant Flash Framework references several

Flash vars from the HTML host wrapper. The wrapper also contains various JavaScript functions that

control the display of the Flash object on the page. On an expand interaction, the Conversant Flash

Framework communicates with the HTML/JavaScript wrapper which swaps the SWF file to display the

expanded panel and adjust the dimensions (and position if necessary) of the containing structure. Upon

retraction, the reverse takes place, displaying the initial banner once again.

See the next sections for details on building expandable banners.

mailto:customersupport@CONVERSANTMEDIA.com

13 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

PRODUCING DOUBLE-ASSET EXPANDABLE FLASH CREATIVE

This section provides instruction for building a double-asset expandable banner using the Conversant

Flash Framework and its methods. Code samples are included for both ActionScript 3 and 2.

SAMPLE FILES

AS3 expandables/cnvr_as3_doubleAssetExpand_300x250_banner.fla

 expandables/cnvr_as3_doubleAssetExpand_500x250_panel.fla

AS2 expandables/cnvr_as2_doubleAssetExpand_300x250_banner.fla

 expandables/cnvr_as2_doubleAssetExpand_500x250_panel.fla

For double-asset production, you will produce two Flash files; one for the initial banner display and one

for the expanded panel display. The sample below is a 300x250 banner that expands left to a 500x250

panel.

The first Flash file is

the initial 300x250

banner.

The second Flash file

is the 500x250 panel.

mailto:customersupport@CONVERSANTMEDIA.com

14 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

Both files get uploaded to the Conversant Rich Media template when the creative is submitted to

Conversant Adserver. The methods in the Conversant Flash Framework communicate with the JavaScript

functions in the Conversant Rich Media HTML template to display the correct file as necessary and

facilitate interaction. Each Flash file contains a reference to the mojo class and has a dedicated button to

trigger the appropriate method on click (mojo_show and mojo_hide).

The expandable ad will initially display the 300x250 pixel banner and upon click of the Expand button it

will display the 500x250 pixel panel in place of the original banner. The Close button will in turn hide the

expanded panel and display the initial banner once again. The instance names of the buttons in the

example below are expandBtn and collapseBtn.

The ActionScript of the 300x250 banner file does the following:

 Imports and defines the Mojo object from the Conversant Flash Framework (Lines 1-3)

 Sets the event listeners to call the appropriate methods from the Conversant Flash Framework

for the Click button (Line 5) and the Expand button (Line 6)

The ActionScript of the 500x250 panel file does the following:

A double-asset banner

and its

expand/collapse

buttons.

EXPAND

COLLAPSE

ActionScript from AS3

sample 300x250

banner.

mailto:customersupport@CONVERSANTMEDIA.com

15 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

 Imports and defines the Mojo object from the Conversant Flash Framework (Lines 1-5)

 Sets the event listener for the Click button (Line 11-12).

 Sets the event listener for the Collapse button (Line 9).

NOTE

The cnvr.mojo_click method additionally causes the banner to return to its collapsed state by calling the

cnvr.mojo_hide method.

ActionScript from AS3

sample 500x250 panel.

mailto:customersupport@CONVERSANTMEDIA.com

16 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

COPY & PASTE ACTIONSCRIPT CODE FOR DOUBLE-ASSET EXPANDABLES

This is the minimum code needed to build a double-asset expandable banner using the Conversant Flash

Framework. You can copy and paste into your .FLAs and modify as needed. This code assumes you name

your buttons as referenced (clickBtn, expandBtn, collapseBtn).

Initial Banner

AS3

import com.conversant.Mojo;

var cnvr:Mojo = new Mojo(root);

clickBtn.addEventListener(MouseEvent.CLICK, cnvr.mojo_click);

expandBtn.addEventListener(MouseEvent.CLICK, cnvr.mojo_show);

AS2

import com.conversant.Mojo;

var cnvr:Mojo = new Mojo(root);

clickBtn.onRelease = function(){ cnvr.mojo_click()};

expandBtn.onRelease = function(){ cnvr.mojo_show()};

mailto:customersupport@CONVERSANTMEDIA.com

17 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

Expanded Panel

AS3

import com.conversant.Mojo;

var cnvr:Mojo = new Mojo(root);

clickBtn.addEventListener(MouseEvent.CLICK, clickBtnClick);

function clickBtnClick(e:MouseEvent):void{

 cnvr.mojo_click();

 cnvr.mojo_hide();

};

collapseBtn.addEventListener(MouseEvent.CLICK, cnvr.mojo_hide);

AS2

import com.conversant.Mojo;

var cnvr:Mojo = new Mojo(root);

clickBtn.onRelease = clickBtnClick;

function clickBtnClick() {

 cnvr.mojo_click();

 cnvr.mojo_hide();

};

collapseBtn.onRelease = function(){ cnvr.mojo_hide()};

mailto:customersupport@CONVERSANTMEDIA.com

18 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

PRODUCING SINGLE-ASSET EXPANDABLE FLASH CREATIVE

This section provides instruction for building single-asset expandable banners using the Conversant

Flash Framework and its methods. Code samples are included for both ActionScript 3 and 2.

SAMPLE FILES

AS3 expandables/cnvr_as3_singleAssetExpand_300x250_500x250.fla

AS2 expandables/cnvr_as2_singleAssetExpand_300x250_500x250.fla

For single-asset production, you will produce a single SWF file which contains all content, animation, and

coding for both the initial banner and expanded panel. The overall dimension of a single-asset creative

will be that of the expanded panel. In this sample, the expandable ad will initially display as a 300x250

pixel banner and upon user interaction expand to display the 500x250 pixel panel. The single Flash asset

will have an overall dimension of 500x250 pixels. The initial frame(s) will only display the left or right 300

pixels, depending on the direction it will expand (in this case right to left), with the remaining 200 pixels

displaying blank space (which will be transparent in the final execution). On the expand interaction, the

timeline will advance and the creative content will expand into the full 500 pixel panel to display the

entire content of the ad. Upon retraction, the creative content will collapse back to the initial 300 pixel

width banner.

Blank space

for panel

expansion.

200px 300px

Sample single-asset

expandable displaying

initial 300x250 pixels.

Sample single-asset

expandable displaying

expanded 500x250

pixels.

mailto:customersupport@CONVERSANTMEDIA.com

19 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

The creative will be loaded into the Conversant host HTML wrapper (configured and managed by

Conversant). The host wrapper will pass in the necessary Flash vars used by the Conversant Flash

Framework. The wrapper also contains various JavaScript functions that control the display of the

wrapper and Flash object on the page. The Conversant Flash Framework references the relevant

JavaScript functions from its methods. See section 1 above for details on the Conversant Flash

Framework.

The timeline of this single-asset banner has two content frames (labeled 'collapsed' and 'expanded'). The

'collapsed' frame displays the 300x250 banner with the left 200 pixels masked. The 'expanded' frame

displays the entire 500x250 panel.

The ActionScript on the first frame ('collapsed') of the main timeline does the following:

 Imports and defines the Mojo object from the Conversant Flash Framework (Lines 2-5)

 Sets the event listener for the Expand button (Line 11) and defines the function to trigger the

expand (Lines 14-17)

Sample timeline from a

single-asset

expandable.

ActionScript from

frame 1 ('collapsed') of

AS3 sample file.

mailto:customersupport@CONVERSANTMEDIA.com

20 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

The ActionScript on the 15th frame ('expanded') of the main timeline does the following:

 Sets the event listener for the Collapse button (Line 2) and defines the function to trigger the

collapse (Lines 5-8)

 Sets the event listener for the Click button (Line 11) and defines the function to be called on

click (Lines 14-18).

ActionScript from

frame 15 ('expanded')

of AS3 sample file.

mailto:customersupport@CONVERSANTMEDIA.com

21 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

COPY & PASTE ACTIONSCRIPT CODE FOR SINGLE-ASSET EXPANDABLES

This is the minimum code needed to build a single-asset expandable banner using the Conversant Flash

Framework. You can copy and paste into your .FLA and modify as needed to integrate with your existing

objects and code. This sample code assumes you name your buttons as referenced (clickBtn, expandBtn,

collapseBtn) and label your frames the same (expanded, collapsed). Of course you can modify your

instance names as necessary.

AS3

FRAME 1 ('collapsed')

// import the Mojo class

import com.conversant.Mojo;

// create an instance of the Mojo object

var cnvr:Mojo = new Mojo(root);

// setup event listener for the expand button to call the expandBtnClick

function

expandBtn.addEventListener(MouseEvent.CLICK, expandBtnClick);

// define expandBtnClick function

function expandBtnClick(e:MouseEvent):void{

 gotoAndStop("expanded");

 cnvr.mojo_show();

};

FRAME 15 ('expanded')

collapseBtn.addEventListener(MouseEvent.CLICK, collapseBtnClick);

function collapseBtnClick(e:MouseEvent):void{

 gotoAndStop("collapsed");

 cnvr.mojo_hide();

};

clickBtn.addEventListener(MouseEvent.CLICK, clickBtnClick);

function clickBtnClick(e:MouseEvent):void{

 cnvr.mojo_click();

 gotoAndStop("collapsed");

 cnvr.mojo_hide();

};

mailto:customersupport@CONVERSANTMEDIA.com

22 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

BANNERS WITH VIDEO
The Conversant Flash Framework video player components are supported in ActionScript 3 only;

however the video metrics referenced in section 4.4 are supported in ActionScript 2 as well.

You can add a video player to the stage in a number of ways. Use the MojoVideo class to add a player

that fully integrates with the Conversant Flash Framework and tracks all of the requisite video

interaction metrics. If you choose a different method to create and control the video object, you can still

implement the tracking metrics by following the instructions in section 4.4 – Tracking Video Metrics

without using the MojoVideo class. This still requires use of the Mojo object but not the MojoVideo

object.

You can add video to any Conversant Rich Media banner ad and it will display as a progressive

download. The preferred format for video file delivery is .FLV, however the following MPEG-4 video

formats are supported as well: .MP4, .M4A, .MOV, .MP4V, .3GP, and .3G2. All MPEG-4 video formats

must utilize H.264 encoding when deploying to Flash Player 9 update 3 and above.

If you require streaming video, please contact your Conversant Account Manager for special

requirements.

PRODUCING A SIMPLE VIDEO BANNER USING THE MOJOVIDEO CLASS

This section provides instruction for building a simple Flash banner with video using the MojoVideo class

of the Conversant Flash Framework.

SAMPLE FILE

AS3 video/cnvr_as3_video_player_SIMPLE_300x250.fla /.swf

Begin by importing the Mojo class and the MojoVideo class from the Conversant Flash Framework. See

section 2.1 above for details on the Mojo class. Create an instance of the Mojo object and the

MojoVideo object. Set the width and height of the new video object to match those of the actual video

that it will display (in the example below, the width and height of the video are 300px and 168px

respectively).

import com.conversant.Mojo; // import Mojo class

import com.conversant.MojoVideo; // import MojoVideo class

var cnvr:Mojo = new Mojo(root); // create Mojo object

var _mojoVid:MojoVideo = new MojoVideo(300,168); // create MojoVideo

 object (W,H)

mailto:customersupport@CONVERSANTMEDIA.com

23 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

With the video object (_mojoVid) defined, now add it to the stage using the addChildAt() method and

position it as necessary.

addChildAt(_mojoVid, 1); // add video object to the stage

_mojoVid.x = 0; // set x coordinate position of video object

_mojoVid.y = 82; // set y coordinate position of video object

The first argument of the addChildAt() method is used to identify the video

object to be added. The second argument identifies the layer where the

video will show up. In this case, the _mojoVid object will display above the

bottom layer of the main timeline because the second argument has a

value of 1. In reference to the timeline at the right, a value of 1 as the

second argument will add the video object between the 'bg' and 'content'

layers. A value of 2 would add it between the 'content' and 'frame' layers.

A value of 3 would add it between the 'frame' and 'clickButton' layers, and

so forth.

Next you will begin to apply methods of the MojoVideo class beginning with the loadAndPlay() method.

Likewise, you could call the loadAndStop() method, depending on whether you want the video to begin

playing as soon as it is loaded or not.

loadAndPlay(flvName:String, ploadPrcnt:Number=0, custMetrics:String=""),

loadAndStop(flvName:String, custMetrics:String=""),

Call the loadAndPlay() method of the _mojoVid object.

_mojoVid.loadAndPlay("video_clip.flv", ploadPrcnt:Number=0,

custMetrics:String="");

The loadAndPlay method of the MojoVideo class calls the video file to be played and begins playback.

The flvName argument accepts a path to a local (or remote) video file. This reference is used for local

playback only and will not be used when the ad is delivered in production. The video file itself must be

included in the package of assets delivered to Conversant to be uploaded into the production

environment in Conversant Adserver. The Conversant Flash Framework is configured to ensure that the

video uploaded with the Flash creative into Conversant Adserver is called when the banner is displayed.

The flvName argument is for the convenience of local testing only.

The ploadPrcnt argument is a numerical value that indicates the percentage of the video file buffered

before the file begins to play.

mailto:customersupport@CONVERSANTMEDIA.com

24 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

The custMetrics argument is used to differentiate metrics for multiple videos within a single creative.

When each video is loaded using loadAndPlay or loadAndStop, enter a unique identifier for that video.

E.g., loadAndPlay(video_clip.flv, 1, "Testimonial1") will result in the video metric Testimonial1-Video-

Plays, Testimonial1-Video-Pause, Testimonial1-Video-Stop, etc. The custMetrics argument is only

necessary for creative with multiple videos.

COPY & PASTE ACTIONSCRIPT CODE FOR SETTING UP A SIMPLE VIDEO BANNER

import com.conversant.Mojo;

import com.conversant.MojoVideo;

import com.conversant.MojoEvent;

var cnvr:Mojo = new Mojo(root);

var _mojoVid:MojoVideo = new MojoVideo(300,168); // set your actual

dimensions

addChildAt(_mojoVid, 1);

_mojoVid.x = 0;

_mojoVid.y = 82;

_mojoVid.loadAndPlay("video_clip.flv", 1); // reference your video clip

mailto:customersupport@CONVERSANTMEDIA.com

25 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

USING ADDITIONAL FEATURES OF THE MOJOVIDEO CLASS

This section builds off of the simple banner defined in section 4.1 above and provides instruction for

incorporating additional controls and features of the MojoVideo class into the video banner. These

include button controls, looping, and buffering.

SAMPLE FILE

 AS3 video/cnvr_as3_video_player_FULL_300x250.fla

We will begin applying features of the MojoVideo class to add functionality to our video banner.

See section 4.3 below for a complete reference of the properties, methods, and events available through

the MojoVideo class.

You will need to add button objects to the stage to use as interface controls for the video. To do this,

you can build your own video control bar or you can use the video controls available in the sample file

for this section. Be sure to name each instance of your control buttons and reference the methods of

the Conversant Flash Framework as detailed below.

Once your button instances are set up you can begin by assigning them to the button properties of the

MojoVideo class.

_mojoVid.playPauseBtn = playPause_btn; // assign play/pause button

_mojoVid.stopBtn = stop_btn; // assign stop button

_mojoVid.fullscreenToggleBtn = fullScreen_btn; // assign full screen

 toggle button

_mojoVid.muteToggleBtn = audio_btn; // assign audio button

The button properties have inherent listeners set up to control the video appropriately as well as track

the interaction metrics through the Conversant Rich Media template which supports the Flash banner in

production. You may want to set up additional listeners and functions to control the buttons themselves

or other aspects of the creative. For example, the playPause_btn movie clip toggles video playback and

Full Screen button

Stop button

Play/Pause button

Audio toggle button 300x250 banner ad

with 300x168 video and

video controls.

mailto:customersupport@CONVERSANTMEDIA.com

26 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

pause. Also, it will display the appropriate icon based on which state the video is in (playing = show

pause icon | paused = show play icon).

playPause_btn.addEventListener(MouseEvent.CLICK, toggleIcon);

function toggleIcon(e:MouseEvent):void {

 if (_mojoVid.isPlaying) { playPause_btn.gotoAndStop(1); }

 else { playPause_btn.gotoAndStop(2); }

};

A similar function may also be set up for the audio button

audio_btn.addEventListener(MouseEvent.CLICK, setAudio);

function setAudio(e):void {

 if (_mojoVid.mute == true) { audio_btn.gotoAndStop(2); }

 else { audio_btn.gotoAndStop(1); };

};

If you would like to buffer the video before displaying the stream, you can use the buffer property.

_mojoVid.buffer = .5;

In this case '.5' is the amount of buffering time you wish to apply (in seconds).

You can determine if the video will loop or not and if so, how many times.

_mojoVid.loopPlayback = 2;

In this case '2' is the number of times the video will loop after initial playback. A value of 2 means the

video will play a total of 3 times (initial playback + 2 loops). If you do not want the video to loop, omit

this property from your code. The default is no looping.

Additionally, you can control the size and position of the replay icon. By default a replay icon will appear

when the video playback and looping complete and when the banner is clicked during video playback.

You can set its size and position with the following:

_mojoVid.replayIconScaling = .8; // scales size of icon (1 = 100%,

 0 = none)

_mojoVid.replayIconOffset = [0,-20]; // X,Y coordinates of icon

 relative to target

mailto:customersupport@CONVERSANTMEDIA.com

27 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

NOTE

For full screen mode to display properly, the video needs to have an x and y position of 0. For easiest

use, put the video into a container, set the video to have a x and y position to 0 within the container,

then place the container on the stage where you would like the video to appear.

You can also remove the video from the stage when playback looping completes or on any event you

choose.

_mojoVid.clearIt();

The MojoVideo class provides options for a wide array of video functionality. See the next section for a

complete reference of all of the MojoVideo properties, methods and events.

INDEX OF BUTTONS, PROPERTIES, METHODS AND EVENTS OF THE
MOJOVIDEO OBJECT

The following tables list all properties, methods, and events available with the MojoVideo class. Use the

appropriate options to control the video as needed. You can reference these in your ActionScript as you

would any standard Flash properties and methods. All of the MojoVideo properties and methods will

automatically fire the appropriate metrics to track in Conversant Reports. You do not need to use all of

the properties or methods of the Conversant Framework in any given project. Choose the features that

you need.

Using the Button Properties is the easiest way to incorporate the basic video interaction with the least

amount of coding. The subsequent properties and methods give you more specific control as needed

but may be redundant. For example, if you assign the playPauseBtn property to your button Play/Pause

button, it will inherently attach the togglePlayback method to the button. Thereby you bypass the need

to assign any of the play or pause properties or methods.

BUTTON PROPERTIES OF THE MOJOVIDEO OBJECT

The following properties provide the simplest way to assign functionality to your video control buttons.

Simply reference the appropriate control button instance name as the value of the property.

mailto:customersupport@CONVERSANTMEDIA.com

28 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

Name Syntax Description

Property Name Full syntax of property

Example
Description of property

clickTagBtn clickTagBtn:DisplayObject

_mojoVid.clickTagBtn =

click_btn;

[write only] Identifies the button assigned to the

clickTAG. Reference the Click button by instance name.

Calls the mojo_click method of the Mojo class.

Note: the video will pause after a clickTAG fires.

playBtn playBtn:DisplayObject

_mojoVid.playBtn = play_btn;

[write only] Identifies the button used to play the video.

Reference the Play button DisplayObject by instance

name. Calls playIt() method when the Play button is

clicked.

pauseBtn pauseBtn:DisplayObject

_mojoVid.pauseBtn = pause_btn;
[write only] Identifies the button used to pause the

video playback. Reference the Pause button

DisplayObject by instance name. Calls pauseIt() method

when the Pause button is clicked.

playPauseBtn playPauseBtn:DisplayObject

_mojoVid.playPauseBtn =

playPause_btn;

[write only] Identifies the button used to toggle

play/pause of the video. Reference the Play/Pause

button DisplayObject by instance name. Calls

togglePlayback() method when the Play/Pause button is

clicked.

Typically used instead of separate play and pause

buttons.

stopBtn stopBtn:DisplayObject

_mojoVid.stopBtn = stop_btn;
[write only] Identifies the button used to stop the video

playback. Reference the Stop button DisplayObject by

instance name. Calls stopIt() method when the Stop

button is clicked.

muteToggleBtn muteToggleBtn:DisplayObject

_mojoVid.muteToggleBtn =

audio_btn;

[write only] Identifies the button used to toggle the

video audio on/off. Reference the Audio/Mute button

DisplayObject by instance name. Calls toggleMute()

method when the Audio/Mute button is clicked.

fullscreenToggleBtn fullscreenToggleBtn:DisplayObj

ect

_mojoVid.fullscreenToggleBtn =

fullScreen_btn;

[write only] Identifies the button used to toggle full

screen mode. Reference the Full Screen button

DisplayObject by instance name. Calls toggleFullScreen()

method when the Full Screen button is clicked.

mailto:customersupport@CONVERSANTMEDIA.com

29 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

OTHER PROPERTIES OF THE MOJOVIDEO OBJECT

Name Syntax Description

Property Name Full syntax of property

Example

Description of property

videoDuration videoDuration:Number

_mojoVid.videoDuration;

[read only] Returns the total length of the loaded video file

buffer buffer:Number

_mojoVid.buffer = .5;
[read/write] Specifies how long to buffer video before

starting to display the stream. The default value is 0.1 (1/10

of a second).

disableMetrics disableMetrics:Boolean

_mojoVid.disableMetrics =

true;

[read/write] Disables all video metrics.

Predominately used for testing ads on non-Conversant web

servers. Prevents the mpcrid error.

loadPrgrss loadPrgrss:Number

_mojoVid.loadPrgrss;
[read only] Returns the percentage of the video file that has

been downloaded

isPlaying isPlaying:Boolean

_mojoVid.isPlaying;
[read only] Returns true if the video is playing, otherwise

returns false.

playPrgrss playPrgrss:Number

_mojoVid.playPrgrss;

_mojoVid.playPrgrss = 50;

[read/write] Accepts/returns a percent of the video played

playTime playTime:Number

_mojoVid.playTime = 10;

[read/write] A playback time in the video defined in

seconds

loopPlayback loopPlayback:Number

_mojoVid.loopPlayback = 2;
[read/write] Set the number of times the video should loop

after initial playback. Default is zero.

volumeLevel volumeLevel:Number

_mojoVid.volumeLevel = .5;
[read/write] Sets/returns values 0 through 1. Default value

is 1.

mute mute:Boolean

_mojoVid.mute = true;

[read/write] Mute/unmute video or detect if video has

been muted

fullScreen fullScreen:Boolean

_mojoVid.fullScreen = false;

[read/write] Enter/exit full screen mode or detect if

currently in full screen mode

replayIcon replayIcon:String

_mojoVid.replayIcon =

replayBtn;

[write only] Defines a DisplayObject (by instance name) to

be used to override the default replay button. The instance

name is referenced as the value of the replayIcon property

(i.e. – replayBtn).

mailto:customersupport@CONVERSANTMEDIA.com

30 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

replayIconScaling replayIconScaling:Number

_mojoVid.replayIconScaling =

.5;

[read/write] Scale the size of the video Replay button.

Default value is 1 (100%). Set value for desired size (i.e. – .5

= 50%, 2 = 200%, etc.).

replayIconOffset replayIconOffset:Array[x,y]

_mojoVid.replayIconOffset =

[0,0];

[read/write] Defines X and Y positioning for the Replay

button offset, specified in px. Default values are zero.

lastFrameStop lastFrameStop:Boolean

_mojoVid.lastFrameStop =

true;

[read/write] If set to true, video will pause on the last

frame without displaying a replay button.

mailto:customersupport@CONVERSANTMEDIA.com

31 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

METHODS OF THE MOJOVIDEO OBJECT

Name Syntax Description

Method Name Full syntax of method

Example

Description of method

loadAndPlay loadAndPlay(flvName:String,

ploadPrcnt:Number=0):void

_mojoVid.loadAndPlay("my_vi

deo.flv");

_mojoVid.loadAndPlay("my_vi

deo.flv", 30);

Start playing a specified video file. Use the flvName argument

to set the path of the video file (in "quotes").

OPTIONAL: use the ploadPrcnt argument to determine the

percentage of the video to download before playback begins

(i.e. – 30 = 30%).

loadAndStop loadAndStop(flvName:String)

:void

_mojoVid.loadAndStop("my_vi

deo.flv");

Specifies a video file to load and play later. Use the flvName

argument to set the path of the video file (in "quotes").

playIt playIt(e:Event=null):void

_mojoVid.playIt();
Starts playing a loaded video or resumes play if video is

paused

pauseIt pauseIt(e:Event=null):void

_mojoVid.pauseIt();
Pauses video playback

togglePlayback togglePlayback(e:Event=null

):void

_mojoVid.togglePlayback();

Play or pause video depending on current playback state

stopIt stopIt(e:Event=null):void

_mojoVid.stopIt();

Stops video playback and resets player to beginning of video

toggleMute toggleMute(e:Event=null):vo

id

_mojoVid.toggleMute();

Mute/unmute video depending on current state

toggleFullScreen toggleFullScreen(e:Event=nu

ll):void

_mojoVid.toggleFullScreen()

;

Enter/exit full screen mode depending on current state

clearIt clearIt(e:Event=null):void

_mojoVid.clearIt();

Deactivate and remove video player from stage.

Currently in development.

For a temporary workaround, use:

 _mojoVid.stopIt();

 _mojoVid.visible = false;

mailto:customersupport@CONVERSANTMEDIA.com

32 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

EVENTS OF THE MOJOEVENT OBJECT

Name Syntax Description

Event Name Full syntax of event Description of event

VIDEO_CLEAR MojoEvent.VIDEO_CLEAR Event object's data property indicates if video object is

cleared

VIDEO_PLAYBACK_

TOGGLE

MojoEvent.VIDEO_PLAYBACK_TO

GGLE
Event object's data property indicates if play mode was

entered (true) or exited (false)

VIDEO_PRELOADING MojoEvent.VIDEO_PRELOADING Event object's data property indicates if video is

preloading

VIDEO_PLAYING MojoEvent.VIDEO_PLAYING Event object's data property indicates if video is playing

VIDEO_PAUSED MojoEvent.VIDEO_PAUSED Event object's data property indicates if video has been

paused

VIDEO_STOPPED MojoEvent.VIDEO_STOPPED Event object's data property indicates if video has been

stopped

FULLSCREEN_TOGGLE MojoEvent.FULLSCREEN_TOGGLE Event object's data property indicates if fullscreen mode

was entered (true) or exited (false)

MUTE_TOGGLE MojoEvent.MUTE_TOGGLE Event object's data property indicates if mute mode was

entered (true) or exited (false)

COMPLETED MojoEvent.COMPLETED Event object's data property indicates if video has played

to completion

REPLAY MojoEvent.REPLAY Event occurs when user clicks on the replay button when

video completes.

CONTINUE_PLAYING MojoEvent.CONTINUE_PLAYING Event occurs when user clicks on the replay button after

returning from a clickTAG

VIDEO_DURATION MojoEvent.VIDEO_DURATION Event object's data property indicates the number of

seconds long

MUTE MojoEvent.MUTE Event object's data property indicates if video is muted

(true)

UNMUTE MojoEvent.UNMUTE Event object's data property indicates if video is un-

muted (true)

mailto:customersupport@CONVERSANTMEDIA.com

33 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

TRACKING VIDEO METRICS WITHOUT USING THE MOJOVID CLASS

The MojoVideo object tracks the appropriate interaction metrics automatically through the properties

and methods detailed in sections 4.1 - 4.3 above. However if you choose to use your own video player

rather than the MojoVideo object, you can still track interaction metrics using the video_event method.

To use the video_event method, you will first need to add the Mojo class as detailed in section 2.1

above.

video_event(evtName:String, timeVal:Number=-1)

For banners containing video (whether expandable or non-expandable), the video_event method is used

to track various events during user interaction with the video player. For example, clicking on the play

button would typically trigger the Video-Plays metrics. These tracking calls are subsequent to the innate

functionality of the interactions (i.e. – clicking the play button will need to make the video play in

addition to calling the video_event function).

There are two arguments available to the video_event method. The first argument, evtName, is required

and passes the actual name of the metric being recorded. For example, passing a value of ”Video-Plays"

as the evtName argument will result in recording a metric called ”Video-Plays" in Conversant Reports.

AS3

playBtn.addEventListener(MouseEvent.CLICK, videoPlay);

function videoPlay(e:MouseEvent):void {

 cnvr.video_event("Video-Plays");

};

AS2

playBtn.onRelease = function() { cnvr.video_event("Video-Plays") };

The video_event method will track any of the standard video metrics. Simply replace the name of the

metric to be tracked within the parentheses and quotation marks following cnvr.video_event. These calls

to the video_event method will need to be incorporated in your ActionScript on the appropriate events.

The Conversant video metrics are limited the following standard event names.

Video-Plays cnvr.video_event("Video-Plays");

Video-Pauses cnvr.video_event("Video-Pauses");

Video-Stops cnvr.video_event("Video-Stops");

Video-25pct cnvr.video_event("Video-25pct");

mailto:customersupport@CONVERSANTMEDIA.com

34 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

Video-50pct cnvr.video_event("Video-50pct");

Video-75pct cnvr.video_event("Video-75pct");

Video-Completes cnvr.video_event("Video-Completes");

Video-Replays cnvr.video_event("Video-Replays");

Video-Rewinds cnvr.video_event("Video-Rewinds");

Video-Mutes cnvr.video_event("Video-Mutes");

Video-Unmutes cnvr.video_event("Video-Unmutes");

Video-Full-Screen cnvr.video_event("Video-Full-Screen");

Learn more about tracking custom events in the section 'Tracking Custom Events.'

The second argument of the mojo_event method is timeVal. This is optional and is used only when a

specific value needs to be attached to the metric. Without the timeVal argument, the default value is

always 1 (i.e. – Video-Plays=1). For example, if you wanted to track the amount of time in seconds that

the video has played when the user clicks the Stop button, you may set a variable that records the time

stamp of the video and appends that to the video_method as the timeVal argument.

AS3

stopBtn.addEventListener(MouseEvent.CLICK, trackTime);

function trackTime(e:MouseEvent):void {

 var vidTime = [return video timestamp];

 cnvr.video_event("Time-Played", vidTime);

};

AS2

stopBtn.onRelease = function() {

 var vidTime = [return video timestamp];

 cnvr.video_event("Time-Played", vidTime);

};

In the example below, the Play button also serves as a Pause button when toggled. Likewise, the Audio

button toggles the audio on and off. In a situation like this, the function's code checks the current state

of the button, performs the appropriate action, and fires the correct metric.

mailto:customersupport@CONVERSANTMEDIA.com

35 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

var playBtnState:String = 'play'; //video is paused initially

if (playBtnState == 'play') {

//[PLAY VIDEO];

cnvr.video_event("Video-Plays");

playBtnState = 'pause';

}

else if (playBtnState == 'pause') {

//[PAUSE VIDEO];

cnvr.video_event("Video-Pauses");

playBtnState = 'play';

};

mailto:customersupport@CONVERSANTMEDIA.com

36 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

TRACKING EVENTS

STANDARD EVENTS

The Conversant Flash Framework automatically generates a number of standard metrics to track user

interactions through Conversant Reports. This is an overview of the standard metrics that Conversant

tracks and what they represent.

 Name Description

C
o

m
m

o
n

 E
ve

n
ts

Display-Time The amount of time the entire ad is displayed

Mouse-In Indicates a user moving their mouse onto the ad

Mouse-Out Indicates a user moving their mouse off of the ad

Interactions Indicates any user interaction with the ad (includes expand, collapse, video interactions)

Hover-Time The amount of time the user’s mouse was positioned over the ad

JavaScript Failure
Impressions

Indicates user does not have JavaScript activated in their browser

JavaScript Failure Clicks Indicates a click by a user after JavaScript Failure Impression

Flash Failure Impressions Indicates the user did not have a sufficient Flash Player installed to display the ad

Flash Failure Clicks Indicates a click by a user after Flash Failure Impression

Ex
p

an
d

ab
le

 E
ve

n
ts

 Expand-Time The amount of time the ad is displayed in the expanded state

Expand[n] The number of times the ad is expanded where [n] counts multiple expands on a single
impression. For example, the first expand on an impression is tracked as Expand1. If the user
closes the banner and expands it again during the same impression, Expand2 is tracked. This
allows you to determine the number of users who expanded once, twice, three times, etc.

Manual-Closes Indicates user-initiated collapse

Auto-Expand Indicates auto-initiated expand

Auto-Closes Indicates auto-initiated collapses

V
id

e
o

 E
ve

n
ts

Video-Plays Indicates the video was played (includes play being resumed after pause)

Video-Pauses Indicates the video was paused during playback

Video-Stops Indicates the video was stopped during playback

Video-25pct Indicates 25% of video has played

Video-50pct Indicates 50% of video has played

Video-75pct Indicates 75% of video has played

Video-Completes Indicates the video played to completion

Video-Replays Indicates the video was replayed after completion

Video-Rewinds Indicates video rewind button was clicked

Video-Mutes Indicates the video was muted

Video-Unmutes Indicates the video was un-muted

Video-Full-Screen Indicates the user activated the video full screen feature

mailto:customersupport@CONVERSANTMEDIA.com

37 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

TRACKING CUSTOM EVENTS

SAMPLE FILES

AS3 events/cnvr_as3_customEvent_300x250.fla

AS2 events/cnvr_as2_customEvent_300x250.fla

mojo_event(rmTag:String, rmVal:String)

The mojo_event method tracks custom event metrics that are not included with Conversant's standard

metric reporting. You can use this to define a unique metric name and have it appear in Conversant

Reports as a new entry.

You can track custom metrics either through the Conversant Flash Framework or by using a direct call to

the mojo_event JavaScript function in the Conversant rich media template.

TRACKING CUSTOM EVENTS USING THE CONVERSANT FLASH FRAMEWORK

In the above example, moving your mouse over the "Hover Me" button triggers an event called

"expandBtn_hover" tracked by Conversant Adserver. If the "expandBtn_hover" metric does not already

exist in Conversant Adserver, the system will automatically create it on the first request. All subsequent

requests will aggregate. The event name "expandBtn_hover" is one example of custom names you can

create. You can define any name you like for your custom metrics. Keep in mind that the name you

indicate is the name that will show up in Conversant reports to track that metric. Custom event names

cannot include spaces or special characters (i.e. - $, &, /, %, etc.). Stick with letters, numbers, and the

underscore_.

mailto:customersupport@CONVERSANTMEDIA.com

38 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

AS3

hoverBtn.addEventListener(MouseEvent.MOUSE_OVER, customEvent);

function customEvent(e:MouseEvent):void {

 cnvr.mojo_event("expandBtn_hover");

};

AS2

hoverBtn.onRollOver = function() {

 cnvr.mojo_event("expandBtn_hover")

};

The default value assigned to any metric is 1 (i.e. – expandBtn_hover=1). The value aggregates for each

metric in Conversant Reports. You can pass a specific value (other than 1) if you choose when you call

the mojo_event function by adding the desired value as a second argument. This must be a numeric

value only. For example if you wanted to track the amount of time (in seconds) a user spend hovering

over the "Hover Me" button, you might track that time value in a variable and then pass it along with

the "expandBtn_hover" event:

 var hoverTime = 30;

 cnvr.mojo_event("expandBtn_hover", hoverTime);

This would result in a value of expandBtn_hover=30 to be recorded by Conversant Adserver.

NOTE

The second argument is optional and will default to a value of 1 if not included.

TRACKING TIMED EVENTS

SAMPLE FILE

AS3 events/CNVR_as3_timedEvent_300x250.fla /

AS2 events/CNVR_as2_timedEvent_300x250.fla /

timed_event(evtName:String, startTiming:Boolean=false)

This method is used for tracking custom time metrics that are not included with the standard

Conversant metric reporting. This method can be used in two ways:

mailto:customersupport@CONVERSANTMEDIA.com

39 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

1. By default the timed_event method tracks the number of seconds from the time the creative

was loaded until calling the method. For example, if you want to know how long an ad displays

before the user clicks on a certain button, call this method when the user clicks the button and

the time will be tracked using the name you define in the evtName argument.

2. The timed_event method can also track the interval between two designated interactions. For

example, you may want to track how long after a user hovers (event 1) over a creative before

they click (event 2) on it. To do this, you would call the method on the first event (mouse over)

and define the evtName argument. You will also include the startTiming argument set to true to

begin a new timer for the given evtName (no tracking metric will be fired). Now call the function

again on the second event (click). Use the same evtName but this time with no startTiming

argument.

The example above illustrates both configurations. The "Time From Load" represents scenario #1 above

where the time will be tracked from when the creative loads until the user clicks the button. Scenario #2

is illustrated by the "Start Time" and "End Time" buttons, with the exception that the first event is on

the click of the "Start Time" button rather than on mouse over as described above.

The "Start Time" button calls the
timed_event method with
"user_event" as the evtName
argument and the startTiming
argument set to true. This starts a
new timer for "user_event."

The "End Time" button calls the
timed_event method, again using
"user_event" as the evtName
argument. This time there is no
startTiming argument so the time is
calculated and sent to Adserve as
"user_event"
(i.e. – user_event=3).

The "Time From Load" button calls
the timed_event method using
"time_from_load" as the evtName
argument. With no startTiming
argument the time from initial
display is calculated and sent to
Adserve as "time_from_load"
(i.e. – time_from_load=5).

import com.conversant.Mojo;

var cnvr:Mojo = new Mojo(root);

loadBtn.addEventListener(MouseEvent.CLICK, loadTime);

function loadTime(e:MouseEvent):void {

 cnvr.timed_event("time_from_load");

}

mailto:customersupport@CONVERSANTMEDIA.com

40 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

ADDITIONAL SPECS AND BEST PRACTICES
The following is a set of best practices to consider when building expandable creative assets. Although

not required by Conversant per se, these are common practices often required by publishers. We

strongly recommended that the following recommendations be adhered to in order to avoid some of

the common problems with publisher acceptance of your ads. Individual publishers may issue additional

specifications and limitations. Be sure to review and consider all publisher/site specs before ad

development begins.

COLLAPSE ON CLICK

Upon click of the creative while in the expanded state, the cnvr.mojo_click method triggers the redirect

URL to open in a new tab or window. On this event, the ad should also collapse back to the banner state

on the original page. The cnvr.mojo_hide method handles the JavaScript portion of the collapse.

The two arguments are used to pass a parameter for multiple click-thru destinations and to pass a

dynamic click-thru URL, respectively (see Click Tags for Multiple Click-thru Creative and Passing a

Dynamic URL on Click-thru in section 2.2). If you are not using multiple click-thru locations or a dynamic

URL, you can omit them completely.

 cnvr.mojo_click();

OR (if using multiple click-thru and/or a dynamic url)

cnvr.mojo_click(1, "http://www.destinationURL.com);

 cnvr.mojo_hide();

In a single-asset expandable, you will also advance the timeline to the frame displaying the collapsed

banner content..

 cnvr.mojo_click();

 gotoAndStop("collapsed");

 cnvr.mojo_hide();

The mojo_hide(); command should always come last in any list of functions.

The examples in the section on expandables above include this functionality in the 'collapse' buttons.

mailto:customersupport@CONVERSANTMEDIA.com

41 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

LOADING EXTERNAL CONTENT

SAMPLE FILES

AS3 FlashVars/CNVR_as3_mojo_aux_300x250.fla

AS2 FlashVars/CNVR_as2_mojo_aux_300x250.fla

Conversant allows you to load external content into your Flash creative. We recommend using external

variables, or flashVars, to reference the file path of the loaded content. For instance, if you would like to

dynamically load a graphic you can use the flashVar mojo_aux1. The file location of the graphic will be

included in the Conversant environment and passed to the flash creative as part of the HTML wrapper.

To use this file path in your flash, you can use the code:

AS 3

var newImage:String = root.loaderInfo.parameters.mojo_aux1;

AS 2

var newImage = _root.mojo_aux1;

This is only the first part of the code you will need to load content from a flashVar. To see the complete

list of code, please consult the sample files :

SAMPLE FILES

AS3 FlashVars/ CNVR_as3_mojo_aux_300x250.fla

AS2 FlashVars/ CNVR_as2_mojo_aux_300x250.fla

If file paths or external text are contained in an XML file, you can load the XML file through a flashVar,

and then use ActionScript to parse the XML file. To see coding examples on how to do this, check the

samples files :

SAMPLE FILES

AS3 FlashVars/ CNVR_as3_mojo_xml_300x250.fla

AS2 FlashVars/ CNVR_as2_mojo_xml_300x250.fla

mailto:customersupport@CONVERSANTMEDIA.com

42 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

CLOSE BUTTON

Most publishers require a clearly visible close button on all expandable ads. This typically consists of an

[x] and/or the word 'Close.' The actual configuration and position of the close button will vary from

publisher to publisher. Here are some recommendations to help ensure your close button meets most

publisher specs.

 Clicking the close button will trigger the ad to collapse back to the banner state.

 Clicking the close button will not cause the ad to redirect or open any additional windows.

 Often this button is required in addition to a mouseout-to-collapse trigger.

 The close button should not be visible on the collapsed banner.

 The hot-spot (clickable area) of the button should be 25% larger than the visible area of the

button.

hot-spot area

The Close button is visible

in expanded panel only.

The clickable hot-spot is

25% larger than the

visible area.

mailto:customersupport@CONVERSANTMEDIA.com

43 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

BORDER OUTLINE

A one pixel border should define the outer edges of the ad. This is particularly important if the ad uses a

white or light background color. Without a border the ad may appear to blend in with the rest of the

page. Many publishers require a visible border on ads with a light background; however this may be

optional on ads with a dark background. If in doubt, it is a good idea to add the border.

The same ad with and

without a visible

border. Note the lack

of definition in the ad

without a border.

mailto:customersupport@CONVERSANTMEDIA.com

44 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

COLLAPSE ON MOUSEOUT

For expandable banners that expand when the user moves their mouse over the banner, publishers

often require the banner to likewise collapse as soon as the user moves their mouse off of the banner

(in addition to displaying a close button as detailed in section 6.2). ActionScript 3 offers the

MOUSE_LEAVE event which, when attached to the stage object, works effectively for this purpose.

stage.addEventListener(Event.MOUSE_LEAVE, cnvr.mojo_hide);

NOTE

This is not available in ActionScript 2.

CODING FOR FULL SCREEN

When switching between normal and full screen mode, the video controls need to be positioned relative

to the full screen size, instead of their position in normal mode. Currently the framework does not

handle the repositioning of video controls between full screen and normal modes. To move the buttons

to the bottom center of the screen in full screen mode, and then back to their former normal mode

positions, please see the sample file.

SAMPLE FILES

AS3 video/CNVR_as3_video_player_FULL_300x250.fla

NOTE

This is not available in ActionScript 2.

mailto:customersupport@CONVERSANTMEDIA.com

45 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

DEVELOPER CHECKLIST

Submit all creative assets, once produced, to Conversant for QA and configuration in Conversant

Adserver. The submission should include:

 All exported SWF file(s)

 All FLA and development files (i.e. - .as, .xfl, etc.) for QA

 Back up image(s)

 Additional assets (i.e. – .gif, .jpg, .png, .xml, .flv files to be loaded dynamically into SWF – if

applicable)

 Indicate minimum Flash Player version (i.e. – 9.0)

 Click-thru URL (or URLs if ad unit contains more than one click-thru)

 List of Custom Events to be tracked by Conversant – if any

mailto:customersupport@CONVERSANTMEDIA.com

46 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

GLOSSARY
banner A banner ad displayed in its native dimensions. For an expandable ad, the

unexpanded state of the ad. i.e. – the banner portion.

panel The expanded display portion of an expandable ad.

mojo_show The JavaScript function in the host wrapper template that expands the <div>

container. mojo_show must be called when the ad is triggered to expand.

mojo_hide The JavaScript function in the host wrapper template that closes the <div>

container. mojo_hide must be called when the ad is triggered to collapse.

mojo_event The JavaScript function in the host wrapper used to track custom metrics.

Flash var A variable contained in the host wrapper for a SWF file which is accessible to

the ActionScript code with the SWF.

clickTAG This Flash var passes the click tag URL for banner clicks and tracks the click

events from the Conversant host wrapper template.

mojo_mpcrid This Flash var passes a unique value to the ActionScript from the host wrapper.

This variable is referenced as an argument for all JavaScript function calls.

mojo_flv This Flash var passes the path of the external video file into the Flash movie,

allowing the assignment of a video file without the need to hard-code its path

into the ActionScript.

mailto:customersupport@CONVERSANTMEDIA.com

47 CONFIDENTIAL & PROPRIETARY - ©CONVERSANT MEDIA 2014, ALL RIGHTS RESERVED. CUSTOMERSUPPORT@CONVERSANTMEDIA.COM 1-866-417-1271

ADDITIONAL SUPPORT
For all technical questions or further guidance and support, please contact Conversant customer

support:

customersupport@conversantmedia.com

1.866.417.1271

mailto:customersupport@CONVERSANTMEDIA.com
mailto:customersupport@conversantmedia.com

